
13. E. A. Zemlyanskii and G. N. Stepanov, "Calculation of heat transfer in three-dimensional 
flow of hypersonic air over slender blunted cones," Izv. Akad. Nauk SSSR, Mekh. Zhidk. 
Gaza, No. 5 (1981). 

14. I. R. Brykina, I. A. Gershbein, and S. V. Peigin, "The laminar three-dimensional boundary 
layer on a permeable surface in the vicinity of the plane of symmetry," Izv. Akad. Nauk 
SSSR, Mekh. Zhidk. Gaza, No. 5 (1980). 

SPECTRAL CHARACTERISTICS OF TWO-DIMENSIONAL 
TURBULENT CONVECTION IN A VERTICAL SLOT 

V. A. Barannikov, P. G. Frik, and V. G. Shaidurov UDC 532.517.4 

The spatial spectra of two-dimensional turbulent convection are obtained in [i]: the 
velocity fluctuation energy in a developed turbulentconvective flow follows the law E(k) - 
k-n/s while the temperature fluctuation energy follows ET(k ) k -7/5. The possibility of 
realizing turbulent flow with such spectral dependences in a vertical slot with heat insulated 
boundaries is shown there. The energy distribution over the spectrum depends substantially 
on the heat elimination conditions on the slot side walls. Flow in a slot with ideally heat 
conductive walls is examined in this paper. The exponential realization of plane turbulent 
flow in a Hele-Shaw convective cell heated from below which is formed by plates conducting 
heat well with a linear temperature distribution along the height is described. 

I. Incompressible viscous fluid flow is considered in a plane vertical layer of thickness 
d with the characteristic dimension 2 >> d (Fig. i), with boundaries of infinite heat conduc- 
tivity and the vertical temperature gradient aT/0y = -a. The motion is considered planar 
(v>>(ux,  vy, O)) with a given velocity profile and temperature across the layer 

v = v(x, g, t) s in  (~z/d), T = --ag + O(x, g, t) s in  (~z/d). (i.i) 

Substitution of (I.i) in the equation of thermogravitational convection in the Boussinesq 
approximation [2] with subsequent integration with respect to z bet~*een 0 and d results in 
two-dimensional equations which take the form after being made dimensionless 

Ov/Ot = - - ( n / 4 ) ( v v ) v  - -  VP + Av - -  D v  + ~Or(O - -  g); (1.2) 

O@/Ot -~ - - ( ~ / 4 ) ( v v ) O  + (AO - -  D O ) / P r  + v~; (1.3) 

VV = 0. (1.4) 

Here Pr = v/X is the Prandtl number; Gr = g~Pa/v 2 , Grashoff number; v, viscosity; X, thermal 
diffusivity; fl, coefficient of thermal expansion; (, a unit vector along the y axis; D 
~212/d2, friction (viscous in (1.2) and thermal in (1.3)) on the side walls of the cavity. 
Selected as units for measuring the length, time, velocity, and temperature are 2, 2z/w, v/2, 
a2. 

The spectral characteristics and investigated on the basis of a hierarchical model of 
turbulent convection constructed in [i] by projecting the equations of motion (1.2) on a 
special basis describing the hierarchy of the vortices and thermics of progressively diminish- 
ing scale 

v = ~ AN. (t) vNn (x, g), @ = ~ C~n (t) ON~ (X, y). 
N,~ N,n 

A singularity of the basis functions is the fact that the functions with different subscript 
N corresponding to the vortex dimension have Fourier transforms that do not overlap in the 
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wave vector space. An increase in N by one corresponds to a 2 times diminution in the vortex 
dimensions. The subscript n governs the location of a specific vortex of a given scale. 

To obtain a small-parameter model of the Galerkin equation for the coefficients ANn and 
C~ and averaged with respect to the subscript n. A system is obtained for A N and C N and 
satisfying the role of collective variables corresponding to velocity and temperature field 
perturbations whose wave vectors lie within one octave: 

AN = ~-~ TNMLA~AL + (KN -- D) AN + Or FNC~; ( 1 . 5 )  
M,L 

CN = ~-~ HNMLAMCL + ( K ~ - -  D) CN/Pr + PNAN, (1 .6 )  
M,L 

= - -  21 ~ v 2x" FN = 3.3"2N; PN = 0 .15"2-~;  TN~L = 9NT " HNM L -- 2N w h e r e  K ~  .~.~ , 
O,3I-N,L-N~ 

HO,M_N,L_N. T a b l e s  o f  v a l u e s  o f  t h e  e l e m e n t s  o f  t h e  m a t r i c e s  T o t  and  H o t  as  w e l l  a s  t h e  

whole elucidation of the derivation of the model equations and the matrix calculation can be 
found in [I]. 

The motion being considered is one of the few possibilities for obtaining a two-dimen- 
sional turbulent flow under laboratory conditions. However, the method of creating a tur- 
bulent convective motion imposes a substantial imprint on the nature of the process, including 
even on the energy distribution over the spectrum. The energy influx is described by the 
terms GrFNC N in (1.5) and PNAN in (1.6). Here the energy pumping is realized in the whole 
motion scale. The influence of viscosity is also modified. The main energy dissipation 
occurs because of friction on the side walls, which is identically effective for motions of 
any scale (the terms DA N and DC N in (1.5) and (1.6), respectively). 

If similarity modes are set up in isothermal turbulence because of the balance of non- 
linear terms describing the distTibution of energy between vortices of different scales, then 
in the case under consideration the similarity mode can be assumed only by a balance of terms 
describing energy pumping in motion of a given scale with dissipative and nonlinear terms. 

We seek the power laws for A~ and C N in the form AN == A02-~N, C~ = Co2 -~N For the 
convective terms to cancel the friction on the side walls it is necessary that GrFNC N ~ DA N 
and PNAN -DCN/Pr , which is possible only for ~ = ~ + i. The balance between the energy 
influx from the vortices of other scales and its dissipation requires T~LA~N L ~.~ OA N and 
HN~LAMCL~vDCN. This is valid for ~ = i independently of the energy distribution of the 
temperature fluctuations. The balance of the nonlinear terms in (1.5) with the convective 
TNMLN~NL~ GrFNC ~ is possible for A = 2~ while the equilibrium of the nonlinear terms in 
(1.6) with the term describing the generation of thermal perturbations by velocity vortices 
that exist in the background of linear temperature distribution H~.~LA~C L ~ PNA~, requires 

= 2. All the relationships presented for ~ and ~ are satisfied for ~ = 1 and ~ = 2, i.e., 
AN= A02-~, CN ~ Co2 -2N. Such a distribution of the vortex amplitudes corresponds to the "-3" 
law for both the velocity fluctuation spectrum and the temperature fluctuation spectrum: 

Z(k) ~ k-~, ZT(k) ~ k ~ .  
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The velocity fluctuation spectrum agrees with the "-3" spectrum for isothermal two-dimen- 
sional turbulence that is set up in an internal entropy transfer interval in which the energy 
flux in the spectrum is zero. The nature of the "-3" interval in the case under consideration 
is different but the velocity fluctuation energy flux over the spectrum due to the interaction 
of vortex triples nevertheless equals zero. This means thatthe energy of the moving fluid 
dissipates in the same scales as generates but a constant flux of entropy exists from the 
large- to the small-scale motion. 

Presented in Fig. 2 are results of solving the system (1.5) and (1.6) for values of the 
parameters corresponding to the experimental model described above: Gr = 1.4"10 l~ , Pr = 0.7, 
D = 55,000. Points I and 2 are values of E and E T and k 0 and k I are the minimal and maximal 
wave numbers representing the plane motion in the cavity. 

2. Air flow in a cavity of 1200 • 1200 x 16 mm size was investigated experimentally. 
The cavity dimensions were selected so as to assure developed turbulent flow in the slot 
plane while conserving plane-parallel flow with a simple profile across the layer. The 
solution of the fluid stability problem in a plane vertical layer of thickness d with boun- 
daries of infinite heat conductivity and a vertical temperature gradient yields the spectrum 
of critical Rayleigh numbers for flows with different velocity profiles across the layer [2] 
Ham = (~2m2/4~-k2)~ (m = 1,2 .... ), where Ra is the Rayleigh number defined over the layer 
halfwidth, k is the perturbation wave number along the x axis, the subscript m corresponds to 
a solution with a dependence on the coordinate z of the form sin (rmz/d). For the lowest 
mode (m = I) and an infinite perturbation wavelength Ra I = 6.09, while for perturbations with 
a wavelength equal to twice the layer thickness Ra I = 24, 36. The minimal value of Ra 2 (k = 
0) equals 97.4. 

For the layer thickness selected and the superposed temperature difference 60~ charac- 
teristic for performing the tests, Ra = 18 calculated over the layer halfwidth, which permits 
computation of the realization of a plane flow with profile of the form sin (~z/d), while Ra 
found with respect to the linear dimension of the cavity and governing the nature of the 
two-dimensional convective flows equals i.I'I0 I~ for given parameters. 

A model is fabricated from four duraluminum plates of 8 mm thickness arranged in paral- 
lel. Between the inner plates is the working cavity in which the air motion is investigated. 
The outer plates perform the role of heat shields. The same linear temperature distribution 
is produced in them as in the main plates while the space between them and the inner plates 
is filled with glass to prevent convection. The temperature on the cavity faces was main- 
tained with O.I~ accuracy. 

All the measurements refer to the temperature field and were executed by 64 thermocouples 
mounted with an uniform spacing along the horizontal and the central sections of the cavity 
and connected to the thermocouple commutator with 40-Hz operating frequency. Control of the 
measurement process, the processing and the delivery of the results were realized by using an 
IVK based on an SM-4 electronic counter. 

The results of measuring a one-dimensional spatial temperature fluctuation spectrum, 
obtained by averaging 300 realizations taken with a l-min interval and noted by dots in Fig. 
3. The line corresponds to a k -~ diminution law. If the power-law dependences in the ener- 
getic E(k) and one-dimensional El(k) spectra agree in homogeneous isotropic turbulence, then 
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for measurements in a bounded domain the intensity of the perturbations with wavelength on 
the order of the domain dimensions in a one-dimensional spectrum drops since there is no 
contribution of more large-scale perturbations because of the masking effect [3]~ 

Represented in Fig. 4 are results of measuring the time spectrum of the temperature 
fluctuations at different points of the cavity. From 5 to 20 realizations were taken off 
1024 points from the selected thermocouples with a 0.08-1.6 sec sampling period. The spectrum 
averaged over the series of measurements was delivered to a printer and plotter. The results 
obtained from one thermocouple are marked on the figure with identical symbols. 

Two intervals were extracted in the spectrum. The low-frequency part of the spectrum 
has a law of diminution of the order ET(~) - ~-I and is subject to the law ET(~ ) - ~-3 from 
the frequency -0.i Hz. Agreement of the powers in the high-frequency part of the tune spec- 
trum with the power of diminution of the spatial spectrum indicates satisfaction of the 
Taylor hypothesis for these scales, fine-scale vortices ane carried over to the large-scale 
flow and the time spectrum agrees at a point with the space spectrum. 

The space-time spectra of the temperature have also investigated. To this end, the 
lowest harmonics were extracted from the spatial spectrum, their realizations were inscribed 
and subjected to a Fourier time analysis. A study performed earlier of the space-time spectra 
of different closed convective flows showed the presence of a series of isolated independent 
frequencies in both the supercritical and the developed turbulent flows [4]. The flow under 
investigation turned out to be an exception in this plan. Measurements of the space-time 
spectra in time segments to 3000 sec yielded monotonically decreasing spectra with the growth 
of frequency without isolated frequencies. 

It is interesting to note that the hierarchical model that permits obtaining space-time 
spectra with series of isolated frequencies [i] in the case of a vertical layer with heat 
insulated boundaries yields stable stationary solutions for the spatial spectra in the case 
considered. 

Thus, the spatial spectra with quite definite inertial intervals obtained in experiment 
confirm the possibility of realizing plane developed turbulent flow in a thin vertical slot. 
At the same time, turbulence in a Hele-Shaw cell with heat-conducting boundaries tends to a 
strong dependence on the detailed construction of the energy-containing vortices, and respec- 
tively, on the forcing actions resulting in their formation, the small slope of the cavity, 
the features of the planform geometry, the temperature boundary condition on the narrow 
faces, etc., because of the sharp decreases in the spectral energy as the wave number (-k -3) 
increases. 

l~ 
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ATOMIZATION OF A TURBULENT LAYER OF A MIXTURE* 

V. E. Neuvazhaev UDC 532.526.4 

This article studies the problem of the atomization of a turbulent layer of a mixture 
formed at the interface of two incompressible media with constant but different densities. 
It is found that the solution tends toward similarity for long periods of time. The degree 
of similarity, meanwhile, cannot be determined from dimensional analysis. Instead, it is 
found during the solution of a boundary-value problem. The degree of similarity is a function 
of the empirical constants of the model. Similarity solutions are constructed for several 
parameters, and the dependence of the degree of similarity on the constants of the model is 
graphed. A formula for the degree of similarity is obtained in an approximation in which the 
turbulent velocity is constant with respect to the space variable, which the solution for the 
density of the mixture is expressed through a probability integra I . A special case of problem 
for a uniform medium was examined in [i, 2]. The results of calculations reported there 
agree with the values obtained in the present study. 

i. Formulation of the Problem. A space is filled with two incompressible fluids with 
the densities p~ and p~. The interface passes over a plane. Let a plane turbulent layer of 
the width L0, consisting of a mixture of both substances, be created at the initial moment of 
time in the neighborhood of the interface. Such a state can arise, for example, due to the 
accelerated motion of an interface in the time interval to with the appropriate sign of 
acceleration. Here, a turbulent layer of the mixture of the width L 0 is created during the 
time t O and is associated with a certain initial turbulent velocity v(x, to). In the absence 
of turbulence sources, the initial layer of the mixture expands and envelops adjacent fluids. 
The turbulent energy, determined through the characteristic turbulent velocity, decays in 
this case and dissipates into heat. 

We will use the semiempirical model in [3] to describe the resultant turbulent mixing. 
This model is based on the balance equation for the kinetic turbulent energy v2/2 and contains 
three constants. The equations are obtained from the conservation laws for a compressible 
fluid by means of the substitution p = p@ p',u = ~+ u', p =p@p' and corresponding averaging, 
with the third correlations and the products of the second correlations being discarded. We 
find from the equation of continuity that ~/0t @ ~u/az = O, u =-pT-u'~. Here, we used the 
incompressibility condition u = 0. 

The equation for the kinetic turbulent energy follows from the continuity law and the 
momentum conservation law [3, 4]: (l/2)(Opv2/Ot @ uOpv2/Ox) = --@vs/1 @ (5/6~v~O~Ox. Applying the 
Prandtl hypothesis p'u ~ =--Iv0~0x, to the equations, we have 

Op/Ot = O(IvOp/Ox)/Ox; (I.i) 

Opv 2 lv 0 In p Opv 2 
'20t" 2 Ox Ox 

(1.2) 

*Presented at the XI All-Union Seminar on Analytical Methods in Gas Dynamics (Frunze, June, 
1985). 
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